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Mister1President, Mister Secretary General, Ladies and 

Gentlemen, I am very pleased and honoured. The other day, 

I looked at the list of the Guy Bomford Prize awardees. 

Honestly, I feel like a hobbit who has just arrived in the 

Rivendell and there are the wise Elves all around him. I will 

express my gratitude at the end of this talk. Now, I would 

like to tell you a few words about the advancements of the 

theoretical apparatus of physical geodesy. This is the topic, 

which I have been very passionate about and also quite 

productive in terms of research outputs, and brought me here 

on this stage tonight. Vast majority of this research has been 

performed at the University of West Bohemia in the Czech 

Republic together with my colleagues Pavel Novák and 

Martin Pitoňák. Currently, however, I am employed at the 

University of Newcastle in Australia. 

You certainly know that gravitational field reveals 

important properties of our planet and it definitely deserves 

to be one of the main pillars of geodesy. Enormous amount 

of gravitational data has been collected by various sensors in 

the past decades. This has mainly stimulated for various 

revolutionary applications in geosciences. But those who are 

more theoretically gifted have also been working hard. They 

have improved the existing concepts and have even gone 

way further than allowed by the available datasets. In my 

opinion, we have experienced a renaissance in the 

theoretical developments in the past few years. My 

colleagues and I have contributed to these advancements by 

solving interesting theoretical problems. For simplicity, I 

divided our research contributions into three categories and 

it is now my intention to briefly describe each of them. 

The first group is about a more complete picture of the 

third-order gravitational tensor. I came with this idea more 

or less out of curiosity. No wonder that I encountered strong 
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resistance and doubts. Fortunately, I could find papers and 

patents reporting actual measurements of the third-order 

potential derivatives that saved my initial goal. On the left-

hand side (see Fig. 1), you can see the mathematical 

expression of the third-order gravitational tensor in the 

gradient and component forms. On the right-hand side, you 

can observe its visualisation as a cube with 27 components. 

Apparently, the third-order gravitational tensor is a complex 

mathematical object. 

 

Figure 1: The third-order gravitational tensor 

 

We discovered the secrets of this tensor by looking at its 

basic properties, such as symmetries of the components, and 

by constructing the differential operators (Šprlák and Novák 

2015). We then found how the gravitational potential could 

be determined from the third-order tensor components by 

solving the spherical gravitational curvature boundary-value 

problem (Šprlák and Novák 2016). We continued further 

with harmonic analysis and even investigated what could be 

achieved when observing the third-order potential 

derivatives by a satellite (Šprlák et al. 2016). Later on, my 

younger colleagues dealt with more practical aspects, such 

as non-singular harmonic synthesis (Hamáčková et al. 2016) 
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or the integral inversion of these quantities (Pitoňák et al. 

2017). In this way, we collected necessary bits and pieces 

and built the first systematic methodology for the third-order 

gravitational tensor, just like it had been done decades ago, 

but for lower-rank gravitational tensors. 

The second group of theoretical problems are those on 

integral transformations. An excellent example of an integral 

transformation is the famous Stokes integral, which every 

geodesist and even surveyor knows. It nicely illustrates how 

gravity anomalies are converted to geoid undulations. It also 

represents analytical solution of the third boundary-value 

problem. For real world applications, we directly calculate 

this integral or solve its inverse. 

There are many quantities that we would like to 

transform from one to another (see Fig. 2). These are the 

disturbing potential on the left, and its first, second, and 

third-order derivatives towards right. The quantities that we 

integrate over are on the lower level at the reference sphere 

of radius R. The computed quantities are at the upper level 

at the radius r. Imaginary line connecting one box from the 

lower level with one box at the upper level could define an 

existing integral transformation. 

Many geodesists have added lines to this schematic and 

so have we in a collection of seven research papers published 

in Journal of Geodesy. These publications are listed in the 

box on the left (see Fig. 2). The different colours help us to 

identify individual lines in the diagram and thus the related 

quantities. In total, we derived impressive 98 integral 

transformations. But we were not obsessed only with 

equations. We investigated spatial behaviour of the integral 

kernels that leads to some practical implications, such as 

efficient numerical calculation, the effect of the distant 

zones, or suitability for inverse problems. Also, almost every 

integral formula was implemented in a computer program 

and validated in a closed-loop simulation. 

Finally, our effort culminated in a review paper 

published in Earth-Science Reviews (Novák et al. 2017). 

Here, we summarised mutual integral formulas among the 

disturbing gravitational potential, its first, second, and third-

order derivatives including eventually all references from 

the geodetic literature. Thus, the diagram in Fig. 2 has been 

completed. 

So far, we have silently assumed spherical geometry. 

Once you solve numerous tasks using this approximation, 

you get a little bored and the next challenging step is to 

consider its spheroidal equivalent. This is the third part of 

my talk. We use a spheroid instead of a sphere, because it 

more closely fits the shape and the gravitational field of our 

planet. On the other hand, we lose the comfort of the 

azimuthal symmetry. In other words, every direction is 

somewhat different on the spheroidal surface and we cannot 

simply introduce the polar coordinates that are so efficient 

on the sphere. In addition, spheroidal counterparts of the 

addition theorem and orthogonality relationships either do 

not exist or are defined differently from the familiar 

spherical case. 

With the help of great findings by geodetic forefathers, 

we could handle these complications and expand the existing 

class of spheroidal integral transformations. Firstly, we 

formulated a mathematical model for inverting gravimetric 

and gradiometric measurements to the gravitational potential 

(Novák and Šprlák 2018). Secondly, we applied two 

orthogonalisation approaches to solve the spheroidal vertical 

and horizontal boundary-value problems (Šprlák and 

Tangamrongsub 2018). There are other interesting tasks to 

be solved, thus the spheroidal story is not over yet. 

Because we addressed all three parts, it is now time to 

conclude. You may have seen that we have significantly 

extended the theoretical apparatus of physical geodesy. 

These advancements are not restricted to geodesy and also 

enhance the more general framework of the potential theory. 

The new mathematical formulations represent the basis for 

the gravitational field modelling and we have applied some 

of them in several applied studies. We are confident that the 

new complex mathematical models can be implemented and 

describe the reality very well. The presented work has been 

a part of activities within the Joint Study Group called 

“Integral equations of potential theory for continuation and 

transformation of classical and new gravitational 

observables” of the Inter-Commission Committee on Theory 

under the umbrella of the International Association of 

Geodesy. For the first time, I have acted as a chairman of 

this study group that has been a very pleasant experience in 

addition to deriving dozens of equations. 

 

 

 

 

Figure 2: Schematic of the derived integral transformations 
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